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Abstract

In financial option pricing, the optimal hedge ratio is a well known concept. This
paper uses this concept within the context of an exponentially truncated Lévy stable
distribution.
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1 Introduction

This paper deals with the possibility to price options by using a specific statis-
tical processes called truncated stable Lévy process. More precisely, we provide
a generalized model inspired from the Black and Scholes framework in which
an admissible hedging strategy is possible in a sense defined by Harrison and
Kreps [1]. In the 1990s, the growing evidence of power law properties in finan-
cial data generated renewed interest in stable Lévy processes which re-emerged
through three categories! of models which can be identified depending on the
technical solution developed to escape from the infinite variance problem en-
countered by economists in the 1970s: time-changed processes, models using a
specific calibration of parameters and models based on a particular calibration
(truncation) of a stable distribution. The first category refers to time-changed
models which introduce an “intrinsic time” providing tail effects as observed
in the market (see for instance Hurst et al. [6]). In other words, the leptokur-
ticity of empirical distributions is generated by a stable Lévy process-time
subordinated to the Wiener process. The second category of models refers to
a specific calibration of parameters in order to have finite statistical moments.
Empirical distributions or time are not changed but authors give a specific
statistical conditions implying the existence of all statistical moments (see for
instance Cartea and Howison [7]). The third category of statistical solutions
developed to solve the problem of infinite variance includes all models based
on a particular calibration of distribution. The difference between this cate-
gory of models and those of the previous category described above refers to
the kind of calibration used. See for instance Geman, Madan and Yor [8].

In this article, we propose a general model to price options when the stochastic
price process is not characterized by a Gaussian or log-normal distribution as
is the case in the Black and Scholes model [9]. There are many authors work-
ing on this subject due to the failure of the Gaussian distribution to fit the
empirical distribution, but in general these works deal with complicated sto-
chastic calculus and there is not yet any algorithm which is generally accepted
for the evaluation of options with non-Gaussian models. Moreover, except in
specific Brownian models, risk in option trading cannot be eliminated. In this
case, the minimization of a particular risk measure is required. That will be
the case in this paper where we will use the risk measure defined by Bouchaud
and Sornette [10] and Aurell et al. [11] but we differ from this article by pre-
senting a more generalized derivation directly in line with the mathematical
framework developed by Harrison and Kreps [1]. More precisely, we will show
that our model meets the sufficient condition of arbitrage defined by Harrison

1 In these categories, we do not include the jump-diffusion/pure jump models nei-
ther the ARCH models which are non stable processes. See Eberlein and Keller [2];
Carr, Geman, Madan and Yor [3]; Borland [4]; Cont and Tankov [5].



and Kreps [1].

The first section of this paper will present a generalized model in line with the
Black and Scholes framework, while the second section will define a specific
risk measure for a non-Gaussian version of this model that we then will present
in the third section. We will use an exponentially truncated Lévy distribution
whose statistical conditions will be defined to make this model viable in a
sense defined by Harrison and Kreps [1].

2 The model

Let us consider a portfolio made up of a (call) option and a short position on
stocks. At time t = 0, the value of this portfolio V is: V = C — ¢S, where
C' is the price of the call option (with strike price K and expiration T'); S
is the stock price (vector) and ¢ is the quantity of the stock. The product
#S =3, ;S; is to be seen as a scalar product with S; the price for each stock.
Initially the stock price is considered to be Sy and the portfolio is considered
to be self-financing. In other words the value of the portfolio changes only due
to changes in the stock price. In this situation the variation of the portfolio
between time t = 0 and 7' is given by: AV = AC' — ¢AS.

The variation of the portfolio due to the call option is, when continuously
discounted at the risk free rate r:

exp(—rT)AV =exp(—rT) max(S — K,0) — exp(r0)C(Sy, K,T)
—exp(—rT)pAS, (1)

where the first term is the value of the option at time 7" and the second term
is the premium paid for the option at time ¢ = 0.

Assuming, we operate in a no-arbitrage market then the discounted stochastic
price process must be a martingale (Harrison and Kreps [1]). We get for the
option price:

C(So, K, T) = ¢ TE[max(S — K,0)] = ¢'T /K TS = K)f(S)dS,  (2)

where f(S) is the probability measure that makes the price to be a martingale.
Thus we cannot use the above equation with any probability distribution
function in order to price options. It is only valid with distributions providing
at least a martingale measure (Harrison and Kreps [1], p.383). The Black and
Scholes solution for option pricing is obtained from the above equation by using



for f(S) the log-normal distribution. In this article, we will use this model by
substituting the log-normal distribution by an exponentially truncated Lévy
one. Since we will work with a non-Gaussian framework, we will have to use
a specific risk measure which is defined in the following section.

3 Ewvaluation of risk

Due to the stochastic nature of the price process, risk is inherent to the finan-
cial evaluation of options and stocks. For the log-normal distribution it was
shown by Black and Scholes [9] that this risk can be completely eliminated (or
hedged) by using an appropriate hedging condition (the so-called ¢ hedging)
for the financing strategy. But for non-normal models, the Black and Scholes
procedure for hedging risk does not work anymore. A measure of risk that was
used in Bouchaud and Sornette [10] and Aurell et al. [11] is the variance of
the value of the portfolio V- = C' — ¢S. We make the supposition here that
this variance is finite. Thus:

R = E[AV?]| = E[(max(S — K,0) — C(So, K,T) — $AS)?]. (3)

First of all let us note that for uncorrelated assets, we have the following
expression: £ [(qﬁAS)Q] = Y. ¢70?, where o; is the volatility. However, when

there exists a correlation between the assets, we can write: E {((bAS)Z} =

Y ¢ro? + 23 9:9;0,;, where o,; is the covariance matrix. In a first time,
let us consider a simplified situation with only one stock, of volatility . In
this case evaluating equation (3) and minimizing the risk with respect to the

trading strategy we get an optimal trading strategy that minimizes the risk:

o 012E [(Sp — S) max(S — K,0)] = 012 /KOO (S0 = 5) (S = K)f(S)dS. (4)

This equation is valid for a martingale process S with E [AS] = 0. If there
are more than one uncorrelated assets (stocks) the above equation should be
applied for each stock individually in order to get the total optimal hedging
strategy. The optimal strategy for the :’th asset would be written like the above
equation with index i on all variables (except thus K'). For many correlated

assets, using F {(qﬁASﬂ =Y o} + 2%, ¢;0;0,, one finds:
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In the simplest case it is straightforward to observe that in the case of the
normal distribution with log-returns the optimal hedging strategy given in
equation (4) is the same as the hedging strategy from the Black and Scholes
model, i.e. ¢* = %. The minimal risk R corresponding to the optimal hedging
strategy is obtained from equation (3): R* = R¢c — ¢*?0? for one stock. Note
that R¢ is a risk term not-dependent upon the investment strategy, defined as:
Re = [ (S — K)? f(S)dS— (f[‘? (S — K)* f(S)dS>2. In the general case with
many correlated assets, the minimal risk is obtained by taking into account
E {((bAS)?} =Y ¢ior+2%; ¢,0;0,;;- Bouchaud and Sornette [10] show that
R* vanishes when a log-normal density is used.

4 Option pricing with exponentially truncated Lévy stable distri-
bution and the finding of the hedging strategy for this model

In this section, we use the generalized model presented in the first section
associated with an exponentially truncated Lévy stable distribution. This ap-
proach will require the use of the risk measure defined in the previous section.
Let us consider the distribution density for the log returns defined by the
equation: f(z) = 6%, where z = log (5%)7 C>0,y>0and0<a<1
which is the condition to have a stable Lévy distribution. See Bucsa et al. [12].
C' can be seen as a measure of the level of activity while the parameter ~ is
the speed at which arrival rates decline with the size of the move (i.e rate of
exponential decay). This model is a symmetric version of the so-called CGMY
model (Carr et al. [3]) and a generalization of the exponentially truncated
Lévy stable model (Koponen [13]) in the limit of high return values. Although
we use a stable Lévy process, the exponentially truncation implies a expo-
nential decay of the distribution. This restriction means that the truncated
distribution generates finite variations making possible the estimation of the
variance which is given by the following equation:

0 = 207" °T(2 — ) with ['(z) = /OO ettt (6)

0

Using equation (2), we calculate the option price for this model for the chosen
portfolio, by considering the density distribution of stock returns:



C=e"" /:Zéz) (Soe_gc — K) éxaﬂdx. (7)

Using the result: [° <= du = gﬁ—(ﬂ) with E,(x) the general exponential integral.

Using this result in equation (7), and expressing C' as a function of squared
volatility, yields:

== L1 I v
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Given this result, we can estimate the hedging strategy minimizing the risk
by using equation (4):
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5 Restrictions for arbitrage opportunities and concluding remark

The result ¢* which is proposed in equation (9) above can also be generalized.
Tan [15] shows that for non-Gaussian densities, ¢* will explicitly depend on 1)
higher partial derivatives of the call option pricing function towards the price
of the underlying asset; and ii) the value of the cumulants (as they are used
in the logarithm of the characteristic function). We do not expand on this
result in this paper. The use of a symmetric distribution allows us to have
the sufficient condition to have, at least, a martingale measure. Although
the uniqueness of this martingale is not obvious for stable Lévy processes,
the exponential truncation combined with the symmetry condition ensures
the condition for the existence of at least one martingale measure. In this
perspective, our model is line with Harrison and Kreps’ [1] sufficient condition
but not with the necessary condition to be in a no-arbitrage and complete
market (Harrison and Pliska [14]).



References

[1] J. M. Harrison and D. M. Kreps, Martingales and arbitrage in multiperiod
securities markets, J. Econ. Theory, 20, 381-404, (1979).

[2] E. Eberlein and U. Keller, Hyperbolic distributions in finance, Bernoulli, 1,
281-299, (1995).

[3] P. Carr and H. Geman and D. Madan and M. Yor, The fine structure of asset
returns: an empirical investigation”, J. Bus., 75, 305-332, (2002).

[4] L. Borland, A theory of non-Gaussian option pricing, Quant. Financ., 2, 415-
431, (2002).

[5] R. Cont and P. Tankov, Non-parametric calibration of jump-diffusion option
pricing models, Journal Computational Finance, 7, 1-49, (2004).

[6] S.R.Hurst and E. Platen and S. T. Rachev, Option pricing for a logstable asset
price model, Math. Comput. Model., 29, 105-119, (1999).

[7] A. Cartea and S. Howison, Option pricing with Lévy-Stable processes generated
by Lévy-Stable integrated variance, Quant. Financ., 9, 397-409, (2009).

[8] H. Geman and D. Madan and M. Yor, Stochastic volatility, jump and hidden
time changes, Financ. Stoch., 6, 63-90, (2001).

[9] F. Black and M. Scholes, The pricing of options and corporate liabilities, J.
Polit. Econ., 81, 637-654, (1973).

[10] J. P. Bouchaud and D. Sornette, The Black-Scholes option pricing problem in
mathematical finance: generalisation and extension to a large class of stochastic
processes, J. Phys. I, 4, 863-881, (1994).

[11] E. Aurell and J. P. Bouchaud and M. Potters and K. Zyczkowski, Option pricing
and hedging beyond Black and Scholes, J. Phys. IV, 3, 2-11, (1997).

[12] G. Bucsa and F. Jovanovic and C. Schinckus, A unified model for price return
distributions used in econophysics. Physica A, 390, 3435-3443, (2011).

[13] I. Koponen, Analytic approach to the problem of convergence of truncated Lévy
flights towards the Gaussian stochastic process, Phys. Rev. E, 52, 1197-1199,
(1995).

[14] J. M. Harrison and S. R. Pliska, Martingales and stochastic integrals in the
theory of continuous trading, Stoch. Proc. Appl., 11 215-260, (1981).

[15] A. Tan, Long memory stochastic volatility and a risk minimization approach for
derivative pricing an hedging. Ph.D. Thesis. School of Mathematics, University
of Manchester (UK), (2005).



