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Abstract 
 
 

This article highlights the current misunderstanding between economists and 
econophysicists by adopting the financial economists’ viewpoint in order to explain 
why the works developed by econophysicists are not recognized in finance. Because 
both communities do not share the same scientific culture, and for the other reasons 
developed in the article, economists often consider econophysics as a strictly 
empirical field without theoretical justification. This paper shows the opposite; it also 
tries to facilitate the dialogue between econophysicists who often do not explain in 
details their theoretical roots and financial economists who are not familiar with 
statistical physics. Beyond this clarification, this paper also allows to identify what 
remains to be done for econophysicists to contribute significantly to financial 
economics: 1) development of a common framework\vocabulary in order to better 
compare and integrate the two approaches; 2) development of generative models 
explaining the emergence of power laws; and 3) development of statistical tests for 
the identification of such statistical regularities. 
 
JEL classification: G1, N2, B4, B5, B26 
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1. Introduction 
 
Econophysics is a recent field that dates back to the 1990s; it applies 
theories\methods developed by physicists and associated with the physics of 
complex systems in order to study complex (nonlinear) problems in economics 
(Daniel & Sornette, 2010; Jovanovic & Schinckus, 2013; Săvoiu & Andronache, 
2013). Because physics is a science dealing with a great number of natural issues 
(matter, energy, light etc.), it potentially offers a wide variety of conceptual tools for 
studying economic phenomena. Based on the success of the first works in 
econophysics dedicated to the statistical characterization of fat-tails in financial 
distributions, the existing literature often associates econophysics with statistical 
physics applied to finance. Although econophysics cannot methodologically be 
reduced to this application1, this area of knowledge contributed to the crystallization 
and to the institutionalisation of econophysics (Gingras & Schinckus, 2012). 
 
Since the birth of econophysics, a huge literature has been published and many 
results have been provided in finance (Bouchaud et al., 2002; Gabaix, 2009; Lux, 

                                            
1
 The application of statistical physics to economics also deals with corporate revenue (Okuyama et 

al., 1999), the emergence of money (Shinohara & Gunji, 2001), or global demand (Donangelo & 
Sneppen, 2000). 
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2009; McCauley, 2009; McCauley et al., 2007; Potters & Bouchaud, 2003; Sornette, 
2014). However, in spite of the numerous publications and of the econophysicists’ 
conviction about their potential contributions to finance, this approach seems to have 
great difficulties for convincing financial economists. While numerous explanations 
have been provided by econophysicists for explaining the relatively ‘closed’ attitude 
of financial economists (Bouchaud, 2002; Gallegati et al., 2006b; McCauley, 2004, 
2006; Sornette, 2014), these explanations refer most of the time to disciplinary 
reactions rather than theoretical and methodological investigations for solving the 
problem. Actually, these disciplinary differences can be very informative in the 
understanding of the situation because part of the gap between the two disciplines, 
which underlines many debates that have emerged between physicists and financial 
economists (Ball, 2006; Durlauf, 2005; Gallegati et al., 2006a; Keen, 2003; LeBaron, 
2001; McCauley, 2006; Stanley & Plerou, 2001). In that perspective, statistical 
physics applied to finance is an interesting area of investigation for one who wants to 
understand the major differences between these two communities and to go forward 
the current limits.  
 
This article aims at analysing the main origins of these difficulties in order to 
contribute to the development of theoretical and methodological bridges between 
these two disciplines. In this context, this paper studies on the one hand, the reasons 
for why a lot of financial economists are reluctant to the application of statistical 
physics to finance, and on the other hand, the possible paths to pass over this 
situation. Roughly speaking, three arguments are usually mentioned by economists: 
1) econophysics would be a data-driven field without theoretical foundations; 2) this 
field cannot really contribute to the existing theory in finance; and 3) the theoretical 
framework used in financial economics is not enough considered by econophysicists. 
This article deals with these three arguments by refuting the first one and discussing 
the two latter. 
 
The following section will illustrate the heart of the problem between statistical 
physicists and financial economists by presenting the role played by power laws in 
the understanding of financial markets. This conceptual introduction will lead us to 
clarify the theoretical roots of these laws defining the major theoretical foundations of 
econophysics. Afterwards we will study the major reasons for why this theoretical 
framework is not currently accepted in finance. We will conclude this paper by 
discussing what remains to be done for a future integrated perspective between 
econophysics and financial economics. 
 
2. The “dialogue of deaf” between econophysicists and financial economists 
 
Among the branches of physics that can be used for studying financial reality, one is 
called statistical physics. This latter is a sub-field of physics dealing with statistics 
and probability theory whose aim is to characterize the properties of matter in 
aggregate. Given the statistical and probabilistic foundations of finance (Davis & 
Etheridge, 2006; Jovanovic, 2008) and the increasing number of financial data 
(Jovanovic & Schinckus, 2016), statistical physics appears to be an appropriate 
branch for studying financial markets because this area of knowledge studies the 
dynamics of complex systems composed by high number of micro-components 
(Rickles, 2008). One important discovery of statistical physics is that such as 
systems can have a macroscopic behaviour with a temporal/spatial scaling-
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invariance property in line with what one can observe at the critical point of a phase 
transition. As we will explain in details, this observation is called “the self-organized 
criticality” and it often statistically describes through a power law, which is one of the 
major theoretical concepts of econophysics. 
 
Although financial economists are familiar with power laws (Gabaix, 2009; Lux, 
2009), these patterns did not arouse enthusiasm in economics/finance research. The 
most obvious reason is that this framework has statistical properties that are not 
compatible with traditional statistical tests (based on the central limit theorem), and 
with the financial mainstream founded on a (improved) Gaussian framework. Actually 
the latter has a historical importance in finance since it played a crucial role in the 
“scientifisation” of the emergence of finance in the 1960s (Davis & Etheridge, 2006; 
Jovanovic, 2008; Jovanovic & Schinckus, 2016). Consequently, in order to stay into 
the Gaussian borders by integrating extreme variations (which is one major 
characteristic of power laws) financial economists have developed alternative 
approaches: jump processes in the 1970s (Cont & Tankov, 2004; Merton, 1976) and 
ARCH class of models in the 1980s (R. F. Engle, 1982; Francq & Zakoian, 2010; 
Pagan, 1996). Beyond these considerations related to the importance of the 
Gaussian framework, power laws also have some drawbacks since their 
identification and their characterization still generate a lot of debates among 
scientists. In 2005, for instance, Michael Mitzenmacher published a seminal paper 
underlying the difficulties in the use of these statistical tools. He explained that 
empirical results are only a part of the power laws issue because the real challenge 
is to explain the emergence of these macro-regularities. According to him, generative 
models explaining the emergence of power laws and quantitative tests to identify 
these laws are a necessary step in their broad use in science (Mitzenmacher, 2005, 
p. 526).  
 
The same year, the economist Steven Durlauf (2005) called into question the 
strength of the empirical evidence for power laws in economic data – in the same 
vein, Newman (2005) showed that this situation is shared in many other fields. 
Although Durlauf was one of the defender of complexity in social sciences (including 
economics) he criticized some works that applied complexity in these sciences whilst 
completely ignoring the economic methodology\theory. His critic, which is shared by 
numerous financial economists and economists, was based on the limits 
emphasized by Mitzenmacher : the lack of quantitative tests for identifying power 
laws and the lack of generative models explaining their emergence. These two 
“lacks” have largely contributed to the maintenance of the Gaussian framework 
(which has been adapted to extreme variations) by financial economists. These lacks 
also have strongly supported the questionings of financial economists about the 
potential contribution of econophysics to their field. Moreover, these calls into 
question have been reinforced by the rhetoric of some econophysicists who have 
ignored the economics literature by presenting their results as completely news while 
they were not always (Lux, 2009)2. We will discuss this claim in our last section. 

                                            
2
 “One often finds [in the literature from econophysics] a scolding of the carefully maintained straw 

man image of traditional finance. In particular, ignoring decades of work in dozens of finance journals, 
it is often claimed that “economists believe that the probability distribution of stock returns is a 
Gaussian”, claim that can easily be refuted by a random consultation of any of the learned journals of 
this field […] some of the early econophysics papers even gave the impression that what they 
attempted was a first quantitative analysis of financial time series ever” (Lux, 2009, p. 230). 
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In conclusion, the current situation reflects a “dialogue of deaf” between 
econophysicists and financial economists. The following sections will investigate the 
reasons of this difficult dialogue between economists and econophysicists. This 
investigation will lead us to explain the theoretical framework implicitly used by 
econophysicists when they referred to power laws. This ‘translation’ (for economists) 
of the major theoretical framework used in statistical physics is the first contribution 
of this article because, in their papers, econophysicists usually do not remind these 
theoretical points (simply because they are well-known by all physicists). For their 
part, economists, who know few about statistical physics, tend to consider 
econophysics as a strictly empirical field without any theoretical justification. The 
next sections will show the opposite by trying to facilitate the dialogue between the 
two communities.  
 
3. Statistical physics goes beyond its borders 
 
For most economists, including financial economists, it is not clear why 
econophysicists find so obvious the idea to import models\methods from statistical 
physics for studying financial markets (or other areas of economics). The influence of 
physics on economics is nothing new (Ingrao & Giorgio, 1990; Le Gall, 2002; 
Ménard, 1981; Mirowski, 1989b; Schabas, 1990) and finance has also been subject 
to the influence of physics (Jovanovic, 2006a, 2006b; Jovanovic & Schinckus, 2013, 
2016; Sornette, 2014). However, despite these links and the variety of physical tools 
for studying economic/financial phenomena, econophysics is fundamentally a new 
approach, very different from the previous experiences. Indeed, its practitioners are 
not economists taking their inspiration from the works in physics to develop their 
discipline as it was the case in the history of economics. This time, it is physicists 
that are going beyond the boundaries of their discipline by using their methods and 
models to investigate various problems usually studied by social sciences – from this 
perspective econophysics is really new. This movement outside physics is rooted in 
changes that occurred in this discipline during the 1970s. 
 

3.1. Statistical physics’ golden age 
 
A turning point in the recent history of physics that took place in the 1970s was the 
realization that a connection can be made between the theories of statistical physics 
and particle physics. Statistical physics’ main purpose is to explain the macroscopic 
behaviour of a system and its evolution, in terms of physical laws governing the 
motion of the microscopic constituents (atoms, electrons, ions, etc.) that make it up. 
Statistical physics distinguishes itself from other fields of physics by its methodology 
based on statistics, a consequence of the enormous number of variables on which 
statistical physicists have to work. As Fitzpatrick (2012) explains, in areas of physics 
other than thermodynamics, physicists are able to formulate some exact, or nearly 
exact, set of equations – resulting from physical laws and theories – which govern 
the system under investigation. Therefore, they are able to analyse the system by 
solving these equations, either exactly or approximately. In thermodynamics, 
physicists have no problem in formulating the governing equations and writing down 
the exact laws of motion, including all the inter-atomic forces. Their problem is the 
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gigantic number of variables – as many as Avogadro’s number, 6 × 1023 – and 
therefore the gigantic number of equations of motion that have to be resolved. This 
number makes study of the system unworkable, even for a computer. The subject is 
so difficult that physicists “are forced to adopt a radically different approach to that 
employed in other areas of physics” (Fitzpatrick, 2012, p. 4).  
 
Fortunately, they are not interested in knowing the position and velocity of each 
individual particle in the system at any time. Instead, they want to know the 
properties of the system (volume, temperature, etc.) at a given moment. Therefore, 
the number of pieces of information they require is minuscule in comparison with the 
number of pieces of information that would be needed to completely specify the 
internal motion. Moreover, the quantities, which physicists are interested in, do not 
depend on the motions of individual particles, but rather on the average motions of 
all the particles in the system. In other words, these quantities depend on the 
statistical properties of particle motion. Moreover, the gigantic quantity of data makes 
possible to use most statistical laws or theorems, which are generally based on 
asymptotic calculus. The method used in statistical physics is thus essentially 
dictated by the complexity of the systems due to the enormous numbers of 
constituents. It leads statistical physicists to start with statistical information about the 
motions of the constituents, and then to deduce some other properties of the system 
from a statistical treatment of the governing equations. The turning point that 
occurred in the 1970s is a direct result of this problematic of extremely voluminous 
data. 
 
Statistical physicists work on the bridge between microscopic level composed by a 
high number of components and the phenomenological (macro) level of physical 
systems. In 1982, the physicist Kenneth Wilson received the Nobel Prize for his 
contribution to such connection. In a sense, his work represents a new approach to 
critical phenomena that emerged in the 1960s, linking these phenomena with scaling 
laws (Hughes, 1999, p. 111). Specifically, Wilson was awarded the prize for having 
developed the renormalization group theory for critical phenomena in connection 
with phase transitions. A phase transition is a transformation of a state of a system to 
another state due to the gradual change of an external variable. This transformation 
can be likened to the passage from one equilibrium to another. When this passage 
occurs in a continuous way, it passes through a critical point at which neither of the 
two states is realised. This is a kind of non-state with no real difference between the 
two states of the phenomenon and for which the system appears the same at all 
scales. This property is called “scale invariance” meaning that no matter how closely 
you look, you see the same thing. 

 
Since the 1970s, critical phenomena, which are one of the toughest problems in 
physics, have captured the attention of physicists due to several important 
conceptual advances in scaling, universality, and renormalization on the one hand, 
and to the very interesting properties that define them on the other hand. Among 
these properties, the fact that the occurrence of their critical points can be 
characterized by a power law deserved special attention, because this law is a key 
element in econophysics’ literature. During the years 1975-80 statistical physics was 
blossoming with the exact solving of the enigma of critical phenomena, and several 
hundred young physicists were entering the field with a great deal of excitement 
(Galam, 2004). The so-called modern theory of phase transitions along with 
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renormalisation group techniques brought condensed matter physics into its golden 
age.  
 
It is in this movement that Wilson developed his method of renormalisation, which 
provides insights into the field of critical phenomena and phase transitions and which 
enables exact resolutions. “The development of [the renormalisation group] 
technique undoubtedly represents the single most significant advance in the theory 
of critical phenomena and one of the most significant in theoretical physics generally” 
since the 1970s (Alastair & Wallace, 1989, p. 237). We will briefly describe this 
method here in order to understand some of the connections econophysicists make 
with finance. Wilson’s method considers each scale separately and then connects 
contiguous ones to one another. This makes it possible to establish a connection 
between the microscopic and the macroscopic levels by decreasing the number of 
interacting parts at the microscopic level until one obtains the macroscopic level 
(ideally a system with one part only). In this perspective, a complex system can be 
divided into n levels in which the higher level is n.). Based on the statistical 
perspectives according to which the sum of the stable Levy distribution is still a 
stable Levy distribution, the renormalisation group method consists in using a scaling 
transformation to group the kn random variables into n blocks of k random variables. 
The transformation Sn takes the sequence X into a new sequence of random 
variables, which is still independent and identically distributed. The transformation is 
called renormalisation group transformation with the critical exponent α while jth is the 
level of analysis. This transformation becomes truly fruitful when it is iterated, when 
each renormalisation leads to a reduction in the number of variables to give a system 
that contains fewer variables while keeping the characteristics of the original system 
– here the fact that the system stays independent, identically distributed and stable3.  
 
Let us take an example of a system composed by 8 elements whose behaviour can 
be associated with variables (X1, ..., X8). In this context, we have a sequence X with 
kn = 8, n = 4 and k = 2 which could be renormalized the sequence 3 times in order to 
obtain a single random variable that characterizes the initial sequence. 
 

 
Figure 1: Renormalisation group method applied to a stochastic process (Sornette, 2006, p. 

53) 

 
Considering the renormalisation group method, the system at one scale consists of 
self-similar copies of itself when viewed at a smaller scale, with different parameters 

                                            
3
 For more details, see Samorodnitsky and Taqqu (1994), Lesne (1998) or Sornette (2006).  
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describing the components of the system. All scales are coupled to each other to 
generate the macro-level. In this context, physicists use a decoupling method taking 
the form of a scale invariance in order to study complex macro-phenomena (Cao & 
Schweber, 1993). At the end of the 1970s statistical physics had established precise 
calculation methods for analysing phenomena characterised by scale invariance. 
Although the scale invariance assumption was not new in physics4, the properties 
allowing the mathematical demonstration of invariance were only established at this 
time. This demonstration makes it possible to study mathematically macroscopic 
regularities that occur and that are directly observable as a result of microscopic 
random interactions without to having study these microscopic interactions that are 
not directly observable. The focus is therefore on the direct phenomenological 
observation. In this perspective, scale invariance contributed to a better 
understanding of complex physical systems: physicists can calculate from 
knowledge of the microscopic constituents the parameters of generic models that 
allow the dynamic of macroscopic behaviours and then their evolution to be 
described without studying what happens at the microscopic level. For this reason, 
scale invariance is the contemporary foundation of any modern approach of 
statistical physics aimed at understanding the collective behaviour of systems with a 
large number of variables that interact with each other.  
 
Research into critical phenomena and scale invariance have benefited from another 
very fruitful connection: the advent of the Ising model. The two-dimensional Ising 
model is a mathematical model of ferromagnetism used to study phase transition 
and critical points. This model is the simplest description of a dual system with a 
critical point. It played a central role in the development of research into critical 
phenomena and it occupies a place of importance in the mind of econophysicists. 
Precisely, at the critical point, the correlation length (i.e. the distance over which the 
direction of one spin affects the direction of its neighbour spins) is so important (and 
considered as infinite) that each spin is influenced by all neighbour spins. Due to the 
infinite correlation length, the spin system becomes scale invariant implying that the 
spin system has the same physical properties whatever the scale of the analysis. 
The renormalisation group method can then be applied, and by performing 
successive transformations of scales on the original system one can characterize the 
behaviour of the macro-system. 
 
The Ising model has another very important feature: because of its very simple 
structure, it is not confined to the study of ferromagnetism. In fact, “[p]roposed as a 
model of ferromagnetism, it ‘possesses no ferromagnetic properties’ ” (Hughes, 
1999, p. 104)! Its abstract and general structure have enabled its use to be extended 
to the study many other problems or phenomena. For these reasons, statistical 
physicists consider the Ising model as the perfect illustration of a simple unifying 
mathematical model. Their looking for such models is rooted in the scientific view of 
physicists for whom “the assault on a problem of interest traditionally begins (and 
sometimes ends) with an attempt to identify and understand the simplest model 
exhibiting the same essential features as the physical problem in question” (Alastair 
& Wallace, 1989, p. 237). The Ising model perfectly meets this requirement. Its use 
is not restricted to statistical physics because “the specification of the model has no 
specific physical content” (Hughes, 1999, p. 99) – this model is above all a 

                                            
4
 For instance, it exists in the work of Euclid and Galileo. 
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mathematical structure independent of the underlying phenomenon studied meaning 
it can be used to analyse any empirical data that share the same characteristics.  
 
With these new theoretical developments (renormalization group theory and Ising 
model), statistical physicists have powerful mathematical models and methods for 
solving crucial problems in physics. Although the idea of establishing the behaviour 
of systems at their macroscopic level without analysing this microscopic level in 
details is not new in physics, physicists developed more and more specific tools 
improving this modelling of the macroscopic level. Moreover, the Ising model quickly 
appeared for physicists as a simple unifying mathematical model that can be used 
for the analysis of a large variety of problems. This progressive decontextualization 
of theoretical tools used in statistical physics contributed to their application outside 
of physics, as we will precise in the next section. 
 

3.2. The temptation to apply the methods of statistical physics outside 
physics 

 
Encouraged by the results obtained in the 1970s, certain physicists began 
investigating correspondences with collective behaviours of any kind of phenomena 
that appear critical, including social phenomena. For statistical physicists, as we will 
see now, this temptation to extend their models and methods outside physics 
seemed relevant because the methodological characteristic of the Ising model allow 
them to identify a universality class of problems. The first step was to identify a 
category of problems likely to be described through the same theoretical framework. 
Critical phenomena are a telling example of such category because they share the 
same behaviour at their critical points implying they can be grouped into the same 
universality class although they refer to very different realities – although these 
systems are microscopically different, they have identical macroscopic behaviour 
which is usually associated with the emergence of a statistical pattern. More 
specifically, the occurrence of critical phenomena is often statistically characterized 
through a power law in physics (Bak, 1987). In this perspective, the application of 
power laws for describing extreme phenomena in social sciences and finance makes 
sense for physicists since they have theoretical tools to deal with these phenomena. 
 
This import of the renormalization group theory and the Ising model into social 
sciences is indicative of changes in the scientific methodology that occurred in the 
20th Century. Giorgio Israel (1996) identifies a major change in the way of doing 
science through what he calls “mathematical analogies”. These are based on the 
existence of unifying mathematical simple models that are not dedicated to the 
phenomena studied. Mathematical modelling is therefore used as mathematical 
analogies by means of which the same mathematical formalism is able to account for 
heterogeneous phenomena. The latter are “only interconnected by an analogy that is 
expressed in the form of a common mathematical description” (Israel, 1996, p. 41). 
In this perspective, the model is an effective reproduction of reality without ontology, 
one that may provide an explanation of phenomena. The Ising model is a perfect 
illustration of these simple unifying mathematical models. Israel (1996) stressed that 
such mathematical analogies strongly contribute to the increasing mathematisation 
of reality.  
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Mathematical analogies support the temptations for statistical physicists to extend 
their models for analysing critical phenomena beyond physics. First, they looked for 
phenomena with large numbers of interacting units whose microscopic behaviours 
would not be observed directly but whose macroscopic results would be observed – 
results that are consistent with the microscopic motions defined by a set of 
mathematical assumptions (which characterize random motion). Therefore, they 
looked for statistical regularities in order to identify scaling behaviours reflected by 
power laws and hence by a unifying mathematical model (Stanley & Plerou, 2001, p. 
563). 
 
This approach led some statistical physicists to create new fields that were called 
“sociophysics” or “econophysics” depending the topics to which their methods and 
models were applied. A first movement, sociophysics, emerged in the 1980s (Galam, 
2004; Săvoiu & Iorga–Simăn, 2013). Then in the 1990s statistical physicists turned 
their attention to economic phenomena, and particularly finance, giving rise to 
econophysics. Finance looked like the perfect candidate due to the theoretical 
hypotheses of the financial economics mainstream. Indeed, the cornerstone of 
financial economics, the efficient market theory, supposes that the financial markets 
components behave randomly and, according to Fama’s reformulation in 1970, that 
investors can be represented by a representative agent. These two hypotheses are 
perfectly compatible with the statistical physics’ approach that makes no hypothesis 
about specific behaviours of microscopic components except their random 
character5. Moreover, the renormalisation group method seems to be an appropriate 
answer to finance, because it provides a conceptual framework for understanding 
the macro-level of the systems (i.e. financial prices observed empirically) with 
minimal information from the micro-level (agents’ behaviour). Thus, by analogy, 
statistical physicists view financial markets as complex systems, and prices as the 
statistical macro-result of a very large number of interactions at a theoretically 
defined  microscopic level. This analogy has been supported by an important 
contextual element: the increasing use of computers in science and the 
computerisation of social reality that favoured the development of statistical physics 
outside of its original borders. 
 
 3.3. The key role of computers 
 
Although independent of the theoretical developments that occurred in statistical 
physics, the computerization of social reality played a key role in the extension of 
statistical physics to social sciences for two reasons: 1) this computerization 
contributed to a better collection and exploitation of very large databases; 2) the 
main statistical tool (power laws) used by econophysicists require an enormous 
quantity of data to be identified due to their asymptotic properties  
 
Computerisation has been implemented in a great number of fields dealing with 
social phenomena. Financial markets occupy a very specific place in this movement, 
because the financial databases are probably the largest sources of data for social 
phenomena. Indeed, since the end of the 1970s, all the major financial markets have 
been progressively automated thanks to computers. Automation has allowed all 

                                            
5
 The first agent-based models in econophysics did the "hypothesis [that] is similar to the 

'representative agent' in Economics" (Chakrabortia et al., 2011, p. 1020). 



10 
 

transactions and all prices quoted to be recorded. Then, since the 1990s, the 
evolution of technology paved the way to the development of high-frequency 
transactions, and therefore the creation of high-frequency data (also called “intraday” 
data). Previously, statistical data on financial markets were generally made up of a 
single value per day (the average price or the last quotation of the day). Nowadays, 
by recording “intraday data”, computers keep in memory all prices quoted and tens 
of thousands of transactions traded every single day (R. Engle & Russell, 2004).  

 
The increasing quantities of data and the computerisation of financial markets led to 
notable changes. Intraday data brought to light new phenomena that could not be 
detected or did not exist with monthly or daily data. The most important for our 
subject is that these new intraday data have exhibited more extreme values than one 
could be detected before. Indeed, before the computerisation, prices recorded were 
estimated through a simple mean of prices used for transactions during the day. In 
this context, extreme values were smaller and less frequent than in intraday data. 
Consequently, intraday data have generated three major changes: 1) they have 
increased the interest for research on extreme values; 2) they have brought new 
challenges in the analysis of stock price variations that have required the creation of 
new statistical tools to characterise them; 3) they favour the growing interest for 
extending the methods and models of statistical physics, which are based on huge 
amounts of data, into finance. The advent of intraday data has made it possible to 
build samples that are sufficiently large to provide empirical evidence for supporting 
the application of power-law distribution analysis to the evolution of prices\ returns. 
According to some authors (Gallegati, et al., 2006b, p. 1) this expansion of financial 
data – which has no equivalent in other social sciences fields – makes financial 
markets “a natural area for physicists”. 

 
Computers have also transformed scientific research on distributions of stock-market 
variations in a very fruitful way for power-laws. Their ability to perform calculations 
more rapidly than human beings opened the door for analysis of new phenomena 
and this situation also allows old phenomena to be studied in a new ways. This is 
particularly true for stable Lévy processes. In general, there are no closed-form 
formulas for stable Lévy distributions – except in their Gaussian, Pareto and Cauchy 
forms – which makes them difficult to work with. Working with such distributions 
implies a specific parameterization requiring complex calculations with numerous 
data. Computer simulations have changed the situation because they allow research 
when no analytic solution exists by making possible to chart step-by-step the 
evolution of a system whose dynamics are governed by non-integrable differential 
equations (i.e. which no analytic solution). Computerisation has also provided a more 
precise visual analysis of empirical data: indeed, by allowing simulations for different 
parameters of the stable Lévy distributions, computers have paved the way to a 
visual research that could have appeared vague before (Mardia & Jupp, 2000). It is 
worth mentioning that computers have also facilitated work with stable Lévy 
distribution since several statistical and mathematical programs have been 
developed to compute stable densities, cumulative distribution functions and 
quantiles, resolving most of computational difficulties usually associated with stable 
Lévy distributions6.  

                                            
6
 We can mention ModEco (http://modeco-software.webs.com/econophysics.htm) developed by a 

retired academic physicist or Rmetrics (https://www.rmetrics.org/) developed by Econophysics Group 
from the University of Zurich – EHT Zurich. It is worth mentioning that the latter software is directly 

http://modeco-software.webs.com/econophysics.htm
https://www.rmetrics.org/
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4. A new tool for analysing extreme values: power-law distributions 
 
After having clarified the elements that contributed to the extension of physics 
outside of its borders, we will present in this section the conceptual framework used 
by econophysics, and more specifically, the theoretical foundations of power laws in 
statistical physics. Afterwards, we will discuss their extension in finance. The majority 
of works related to econophysics claim that the financial markets (or economic 
systems) can be considered as complex system whose evolution of the macro-
behaviour follows a power-law distribution (also often referred to as heavy-tail 
distributions, Pareto distributions, Zipf distributions, etc.)7. A finite sequence y = (y1, 

y2, …, yn) of real numbers, assumed without loss of generality always to be ordered 

such that y1 ≥ y2 ≥ … ≥ yn, is said to follow a power law if 

 
k = c yk

- α ,      (1) 

 
where k is (by definition) the rank of yk, c is a fixed constant, and α is called the 

critical exponent or the scaling parameter. In case of a power-law distribution, the 
tails decay asymptotically according to α – the smaller the value of α, the slower the 
decay and the heavier the tails. A more common use of power laws occurs in the 
context of random variables and their distributions. That is, assuming an underlying 
probability model P for a nonnegative random variable X, let F(x) = P[X ≤ x] for x ≥ 0 

denote the (cumulative) distribution function of X, and let  denote the 

complementary cumulative distribution function. In this stochastic context, a random 
variable X or its corresponding distribution function F is said to follow a power law or 
is scaling with index α > 0 if, as x → ∞, 
 

P[X > x] = 1 − F(x) ≈ c x – α ,    (2) 
 
for some constant 0 < c < ∞ and a tail index α > 0. For 1 < α < 2, F has infinite 
variance but finite mean, and for 0 < α ≤ 1, F has infinite variance and infinite mean. 
In general, all moments of F of order β ≥ α are infinite.  
 
The importance of power laws in statistical physics did not pop up from nowhere. 
The previous section explained their links with critical phenomena, which have 
largely monopolized the interest of physicists in the last decades. This interest has 
created a kind of fascination of power laws for econophysicists: 
 

“Why do physicists care about power laws so much? […] The reason […] is 
that we’re conditioned to think they’re a sign of something interesting and 
complicated happening. The first step is to convince ourselves that in boring 

                                                                                                                                        
used in university modules developed by this group (https://www.rmetrics.org/sites/default/files/2013-
VorlesungSyllabus.pdf). More famous statistical and mathematical software gradually integrate key 
econophysics concepts. The well-known Mathemactica, for example, has proposed a “stable 
distributions package” for 2005 (Rimmer & Nolan, 2005). Aoyama et al. (2011) showed that the 
statistical software Stata and SAS can also be used for an econophysical analysis of economic data. 
We can also mention Alstott et al. (2014), or the script provided by Aaron Clauset in his web page, 
http://tuvalu.santafe.edu/~aaronc/powerlaws/, to be used with Matlab. 
7
 There are some exceptions, particularly in the most recent works (Nakao, 2000). 

F(x) = 1 - F(x) 

https://www.rmetrics.org/sites/default/files/2013-VorlesungSyllabus.pdf
https://www.rmetrics.org/sites/default/files/2013-VorlesungSyllabus.pdf
http://tuvalu.santafe.edu/~aaronc/powerlaws/
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situations, we don't see power laws” (Shalizi’s notebook 
http://bactra.org/notebooks/power-laws.html). 

 
Bouchaud (2001, p. 105) expresses a similar idea:  
 

“Physicists are often fascinated by power laws. The reason for this is that 
complex, collective phenomena give rise to power laws which are universal, 
that is, to a large degree independent of the microscopic details of the 
phenomenon. These power laws emerge from collective action and transcend 
individual specificities. As such, they are unforgeable signatures of a 
collective mechanism”. 

 
Such fascination has strongly contributed to the increasing number of empirical 
studies on power laws. 
 

4.1. Power-law distributions seen as a phenomenological law 
 
First at all, we must mention that empirical investigations into phenomena distributed 
according to power laws are nothing new in economics. They date back to Pareto 
(1897) and, since then, they have been regularly observed and studied for numerous 
phenomena since (Mitzenmacher, 2004; Simkin & Roychowdhury, 2011). Statistical 
physicists thus joined a larger movement, reinforcing the idea that power laws and 
critical phenomena constitute important tools for analysing empirical phenomena. 
 
The common way to probe for power-law behaviour has consisted in checking 
visually on a simple histogram that the frequency distribution of the quantity of x 
appears as a straight line when plotted on double logarithmic axes. Indeed, taking 
the logarithm of both sides of the equation 1, we see that the power-law distribution 
obeys ln P[r > x] = -α ln x + c. Thus, a distribution that approximately falls on a 
straight line provides an indication that the distribution may follows a power law, with 
a scaling parameter α given by the absolute slope of the straight line. This type of 
visual investigation has guided econophysicists’ empirical research. This linearity 
has been observed in a wide variety of phenomena, suggesting that power law 
distribution could fit with a great number of observations. Moreover, the number of 
observations has considerably increased with the spread of computerized databases 
(Dubkov et al., 2008). Thus, “[i]n the mid-1990s, when large data sets on social, 
biological and technological systems were first being put together and analyzed, 
power-law distributions seemed to be everywhere […]. There were dozens, possibly 
hundreds of quantities, that all seemed to follow the same pattern: a power-law 
distribution” (http://tuvalu.santafe.edu/~aaronc/courses/7000/csci7000-
001_2011_L3.pdf). The result was that some “scientists are calling them more 
normal than normal [law] [; and therefore] the presence of power-law distributions in 
data […] should be considered as the norm rather than the exception” (Willinger 
cited in Mitchell, 2009, p. 269). This linear relationship was also observed in financial 
and economic phenomena in addition to Pareto’s observations on income 
distribution (Axtell, 2001; Cordoba, 2008; Eeckhout, 2004; Gabaix, 2009; Gabaix et 
al., 2007; Gabaix & Landier, 2008; Klass et al., 2006; Krugman, 1996; Levy, 2003; 
Lux, 1996). Mandelbrot was the first to identify it in stock-price variations, and he 
applied the stable Lévy process to stock-price movements in the early 1960s. 
Although financial economists did not follow Mandelbrot’s research (after some failed 

http://bactra.org/notebooks/power-laws.html
http://tuvalu.santafe.edu/~aaronc/courses/7000/csci7000-001_2011_L3.pdf
http://tuvalu.santafe.edu/~aaronc/courses/7000/csci7000-001_2011_L3.pdf
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attempts in the 1960s and the 1970s due to mathematical difficulties8), economists 
have always used power laws as a descriptive framework to characterise some 
economic phenomena – such as the relationship between the size of firms, cities or 
organizations with one of their characteristics (Jovanovic & Schinckus, 2016). 
Recently, Gabaix (2009) showed that the returns of the largest companies on the 
New York Stock Exchange exhibit the same visual linearity. 
 
The high number of empirical data suggests a kind of the phenomenological 
universality for power law. In addition, these observations have supported the idea 
that methods and models coming from statistical physics could be applied outside 
physics. However, it is worth mentioning that the association of these empirical 
regularities with a power law is not free of theoretical presuppositions that are 
directly inherited from physics as explained hereafter. 
 
 4.2. The theoretical foundations of power laws in statistical physics 
 
The major theoretical foundation given to the observations of power refers to the 
self-criticality theory introduced, in physics, by Peter Bak et al. (1987, 1988). 
Although this theory has originally been developed to describe the emergence of 
power laws characterizing the evolution of physical systems, it is often used by 
econophysicists to defend the existence of such macro-laws in the finance area. 
According to Bak, the linearity visually identified in the histogram plotted on a log-log 
axes, can be interpreted as the expression of the complexity of a phenomenon (Bak, 
1994, p. 478). The basic idea of self-organized criticality is that certain phenomena 
maintain themselves near a critical state. Physicists talk about “critical state” 
because the system organizes itself into a fragile configuration based on a knife-
edge9. Although their instability, some complex systems look to be ruled by a single 
macroscopic power-law describing the frequency at which phase transitions occur 
(Newman, 2005). This theory of self-organized criticality progressively became a 
theoretical reference for physicists for who power laws are synonymous with 
complex systems. The importance of power laws in the analysis of complex systems 
can be understood at three levels: 1) the distribution describing the occurrence of 
critical states and correlation lengths; 2) these laws have scaling properties and; 3) 
these laws refers to a large variety of phenomena invariance (universality classes). 
 
First level, the correlation lengths: for critical phenomena, the large correlation 
lengths that exist in the system at the critical point are distributed like a power law. 
Traditionally, physicists characterised the correlations between the constituents of 

the system with an exponential law e
−r

ξ(T) (i.e. the correlation function), where r is the 
distance between two points and ξ(T) is the correlation length – precisely, ξ(T) ∝
|T − Tc|−υ. Then, following the observations of critical phenomena, in order to 
characterise the divergence observed at the critical point, they added to the 

                                            
8
 See Jovanovic and Schinckus (2013) for further details on the topic. 

9
 The basic idea of self-organized criticality is that certain phenomena maintain themselves near a 

critical state. A telling example of that situation is a quiet sand pile in which the addition of one grain 
generates mini-avalanches. At some point, these mini-cascades stop meaning that the sand pile has 
integrated the effect of this additional gran. The sand pile is said to reach its self-organized critical 
state (because the addition of a new sand grain would generate the same process). Physicists talk 
about “critical state” because the system organizes itself into a fragile configuration based on a knife-
edge (the addition of only one sand grain would be enough to modify the sand pile).  
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exponential law a power law: r−∝e
−r

ξ(T). Therefore, at the critical point, due to the 

divergence, the exponential, e
−r

ξ(T), goes to zero and the correlation function is 
distributed according to a power law alone, r−∝. In other words, away from the critical 
point the correlation length between two constituents, x and y, decays exponentially, 

e
−|x−y|

ξ(T) . But when we approach the critical point, the correlation length increases, and 
right at the critical point, the correlation length goes to infinity and decays in 
accordance with the power of the distance, |x-y|-α. Intuitively, far from the critical 
point, the microscopic elements dynamics approximately follow a Gaussian 
distribution but, when we approach the critical point, this microscopic dynamics can 
deliver a non-Gaussian stationary distribution. 
 
Second level, the scaling properties: at their critical point, the phenomena become 
independent of the scale used; showing therefore a scaling invariance. The lack of a 
characteristic scale implies that the microscopic details do not have to be considered 
in the analysis. Scaling invariance is the footprint of critical points – and of critical 
phenomena too – and power-law distribution is the sole distribution that has a scale 
invariance property. In other words, at the critical point, “the observable quantities in 
the system should adopt a power-law distribution” (Newman, 2005). This means that 
the shape of the phenomenon's size distribution curve does not depend on the scale 
on which we measure the size of the phenomenon (the results are exactly the same 
for “small” scale as for “large” scale). For this reason, power laws are called scaling 
laws.  
 
Third level, the universality classes. This connection comes from the critical 
exponent that characterises power laws. Determining the critical exponent of a 
phenomenon allows this phenomenon to be associated with a specific universality 
class. This association serves to identify some characteristics of the system used to 
model the phenomenon and to deduce their behaviour at their critical point. 
Moreover, the classification of critical phenomena into universality classes is crucial 
in finance, because stability is only guaranteed when we work within a single 
universality class (adding two stable random variables with different critical 
exponents does not give a stable distribution). 
 
These three elements have provided theoretical foundations for the use of power 
laws outside of physics. When physicists observe a power law characterizing the 
dynamics of no-physical systems, they implicitly import the theoretical tools they 
usually associated with these statistical regularities. So doing, physicists propose a 
metaphorical analogy in line with what we explained in the section 3.2. 
 

4.3. Power laws and the framework of financial economics 
 
Power laws have at least three crucial connections with the theoretical framework of 
financial economics. 
 
First connection, power laws are easily deduced from the financial definition of 
returns. Considering the price of a given stock, pt, the stock return rt is the change of 
the logarithm of the stock price in a given time interval Δt,  
 

rt = ln pt – ln pt-Δt       (3) 
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Therefore, the probability of having a return r higher than the return x, P[r > x], can 
be written as ln P[r > x] = -α ln x + c, which can be rewritten as a power law 
expression by using the exponential of both sides of the equation, P[r > x] = c x - α.  
 
Second connection, power laws are easily linked with the stochastic processes used 
in financial economics, which describe the evolution of a variable X (price, return, 
volume etc.) over time (t). Knowing that a power law is a specific relationship 
between two variables that requires no particular statistical assumptions about these 
two variables, the evolution between the variables X and t may be associated with a 
power law. In this case, this evolution is a stable Levy process such as  
 

 (for ).     (4) 

 
where C is a positive constant called the tail or scale parameter and the exponent μ 
is between 0 and 2 (0 < μ ≤ 2). It is worth mentioning that among Lévy processes, 
only stable Lévy processes can be associated with power laws because the stability 
property is a statistical interpretation of the scaling property. While stochastic 
processes used in financial economics are mainly based on the Gaussian 
framework, taking a Gaussian process as a starting point, a no-normal diffusion law 
can be obtained by keeping the independence and the stationarity of increments but 
by characterising their distribution through a large law (i.e. exhibiting fat tails).  
 
Third and last connection, the interest of econophysics for finance is related to the 
work of Mandelbrot. This author attempted to extend statistical physics to other 
fields, including social sciences since the 1960s (Mandelbrot, 1957, p. 4). He 
provided crucial results for financial economics, particularly by suggesting, with 
Samuelson (1965), to replace the random-walk model with the martingale model 
(Mandelbrot, 1966a). Martingale model is a cornerstone for the work of Harrison and 
Kreps (1979), Kreps (1981) and Harrison and Pliska (1981) that gives a 
mathematical definition of the theory of informational efficiency. Thus, in a sense, 
econophysicists, who refer systematically to Mandelbrot’s work, seem to have 
concretized his project – we will discuss this link in the next section. 
 
5. Breaking down the disciplinary barrier between econophysics and financial 
economics 
 
The previous sections have explained the relevance of power laws in finance; they 
also showed that some conceptual and historical links between econophysics and 
financial economics exist. In this context, the question is: why these two fields do not 
propose a more integrative collaboration. Why are econophysics works mainly 
published in physics? We can identify four barriers explaining the difficulty for 
econophysicists to be published in financial journals: 1) the different expectations in 
the publishing process between econophysicists and financial economists; 2) the 
confusion due to the use of concepts and vocabulary in different ways; 3) the lack of 
generative models (financial meaning) explaining the emergence of power laws; and 
4) the lack of quantitative tests for identifying power laws. 
 

P(x) ~
C

x
1+m

x®±¥
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5.1. Different scientific cultures 
 
The first reason of this no-collaboration is simply related to the different scientific 
culture between the two communities (Jovanovic & Schinckus, 2016, p. chap. 4; 
McGoun, 2003, p. 432). Papers dedicated to econophysics are mainly published in 
physics journals implying that their vocabulary, method, and models are those used 
in physics (Gingras and Schinckus, 2012). Although scientific papers appear 
contextless, they are social constructions referring to a disciplinary culture based on 
an implicit knowledge shared by scientists involved in that discipline. In their 
scientific structure, articles published in a specific field share a highly stylised and a 
formal system of presentation that aim to convince readers who expect to find this 
specific system (Bazerman, 1988; Gilbert & Mulkay, 1984; Knorr-Cetina, 1981, p. 
chap. 5). For instance, financial economists and physicists tend to present their 
scientific writings differently. A common practice in financial economics is to write a 
substantial literature review “demonstrating the incrementalism of this literature” 
(Bazerman, 1988, p. 274) in order to emphasise the accumulation of knowledge and 
the ability of authors to contribute to a pre-existing codified knowledge. In contrast, 
physicists mainly focus on the practical implications of their articles, mentioning only 
references that deal with potential applications (Jovanovic & Schinckus, 2016). 
Consequently, due to these differences, it is more difficult for econophysicists to get 
past the gatekeepers of financial economics journals. However, beyond this 
observation, we must stress that in recent years more and more joint publications 
(such as this special issue, for example) and research have been developed, taking 
part in bridging the gap between these two scientific cultures (Ausloos, 2001; 
Bouchaud, 2002; Carbone et al., 2007; Chakrabarti & Chakraborti, 2010; Chen & Li, 
2012; Durlauf, 2005; Farmer & Lux, 2008; Gabaix, 2009; Keen, 2003; Lux, 2009; 
McCauley, 2006; Stanley & Plerou, 2001). 
 

5.2. The lack of common referent 
 
As Jovanovic and Schinckus (2016) explain, econophysics and financial economics 
use similar concepts but in different ways, creating confusions and 
misunderstandings. We can illustrate that point with the connexion between 
Mandelbrot and econophysicists mentioned in the previous section. While both arrive 
at the same result – modelling stock-price variations using stable Lévy processes, 
they do not take the same path to get there. Mandelbrot starts his analysis from a 
purely mathematical property: the stability of stochastic process, which is, according 
to this author, the most important hypothesis for a process in order to produce new 
interesting results in finance (Mandelbrot, 1966b). In this context, his suggestion was 
to generalise Gaussian processes by using stable Lévy distributions and the 
generalised central-limit theorem, which is compatible with stable Lévy distribution.  
 
The origin of power law used by econophysicists is quite different since their interest 
in this statistical framework rather results from the characterization of critical 
phenomena through the renormalisation group method. (Lesne & Laguës, 2012, p. 
63). Renormalisation method allows the demonstration of the stability for non-
Gaussian stable processes. More precisely, the renormalisation method is based on 
the property of being distributed according to a power law is conserved under 
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addition, multiplication, and polynomial transformation10. Moreover, the 
renormalisation group methods focus on the scaling property of the process, which a 
characteristic of critical phenomena.  
 
This conceptual difference between Mandelbrot’s works and contemporary studies in 
econophysics explains why authors involved in the latter work with power law 
distributions while Mandelbrot only focused on stable Lévy distributions. Actually, the 
latter is a specific case of the first since stable Lévy distribution is associated with a 
power law whose increments are independent. In other words, econophysicists and 
Mandelbrot use the same statistical tools but not for the same theoretical reasons. 
Furthermore, this observation reminds that econophysics is an original research and 
contradicts the argument of the no-originality of econophysics usually claimed by 
economists who presented this field as a simple extension of of Mandelbrot’s works. 
 

5.3. The lack of quantitative tests 
 
The third important barrier refers to the absence of real statistical tests for the 
identification of power laws. The vast majority of existing statistical tools have been 
developed in a Gaussian framework making them inappropriate to test power laws. 
Scientists know that this problematic issue makes difficult the empirical use of power 
laws (Mitzenmacher, 2005; Newman, 2005). To date, and as we explained before, 
econophysicists based their empirical results on a visual technique for identifying 
that a phenomenon fits with a power law. This visual approach is extremely 
problematic for financial economists for two major reasons. Firstly, this method 
generates significant systematic errors (Clauset et al., 2009; Gillespie, 2014; Stumpf 
& Porter, 2012), particularly because power laws can visually be close to so-called 
exponential laws. Only a large volume of data makes it possible to distinguish 
between the two types of law (Mitzenmacher, 2004). Moreover, the visual approach 
has no objective criterion for determining what a “good fitting” is. For instance, 
LeBaron (2001) also showed that simple stochastic volatility models can produce 
similar behaviours to those obtained by econophysicists with power laws. Stanley 
and Plerou (2001) replied to LeBaron’s critique, but, although their reply provided an 
interesting technical reply, it also showed the methodological difficulties between the 
two approach. Secondly, financial economists, who are defenders of quantitative 
tests, created their own discipline by rejecting strongly the visual approach used for 
predicting stock price variations (Jovanovic, 2008). They promoted the use of 
quantitative tests as scientific condition for their emerging discipline. Considering this 
historical\methodological position, visual tests used by econophysicists are 
considered by financial economists as having no credibility, and even no scientific 
foundations.  
 
The lack of quantitative tests makes econophysics literature hardly acceptable to 
financial economists (Durlauf, 2005, p. F234). Moreover, the problems created by 
the visual approach are also well known by other scientific communities 
(Mitzenmacher, 2004) but also by some econophysicists (Clauset, et al., 2009, p. 
691), who pointed out that “better and more careful testing is needed, and that too 

                                            
10

 When we combine two power-law variables, the one with the fatter-tailed distribution (that is, the 
one with the smaller exponent) dominates. The new distribution is the minimum of the tail exponents 
of the two distributions combined. 
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much of data analysis in this area relies on visual inspection alone” (Farmer & 
Geanakoplos, 2008, p. 24). 
 
Providing a quantitative method for testing power law is a big challenge from a 
mathematical and statistical viewpoint, and very few authors have been working on. 
Moreover, from a financial economics’ viewpoint, several problems exist in order to 
develop statistical tests dedicated to power laws (Broda et al., 2013, p. 293). Despite 
these difficulties, in the recent years, significant results have emerged. The literature 
has taken two different approaches to test power laws: on the one hand, some 
authors have used a rank-size rule (Gabaix & Ibragimov, 2011); and, on the other 
hand, some authors have worked on the size-frequency relation (Clauset, et al., 
2009). However, to date these tests are not applied to financial time series. 
Nevertheless, due to the rapid expansion of statistical studies on this topic, we could 
expect the development of a new research in the close future11.  
 

5.4. Two ways of defining the explanation 
 
Although econophysicists have obtained numerous empirical observations during 
several decades, there are no generative models explaining the emergence of power 
laws in economic terms. From the statistical physics’ viewpoint, we could consider 
that seeing phenomenon studied as a critical phenomenon is a theoretical 
justification for the use of models coming from statistical physics. However, leaving 
this theoretical argument aside, econophysicists have produced no generative 
models to explain why power laws govern the economic phenomena studied. This 
situation also existed in the other fields in which statistical physicists have extended 
their models and methods (Mitzenmacher, 2005). The observation of a statistical law 
per se does not give a meaning to the observed data and although econophysicists 
refers to what makes sense for them, they do not provide an “understandable 
meaning” which could make sense for an economists as Durlauf (2005, p. F235) 
pointed this out. Consequently, “The econophysics approach to economic theory has 
generally failed to produce models that are economically insightful” (Durlauf, 2005, p. 
F236). This problem is reinforced by the fact that econophysicists and economists 
have a different meaning for what is an acceptable explanation12: the first use the 
renormalization group theory and scaling invariance as theoretical foundations for 
their macro-explanation of financial markets while economists rather explain these 
markets through a microscopic incentives-based approach13. Econophysicists 
propose a statistical explanation (based on a decoupling scales method) while 
financial economists use a behaviourist explanation founded on an assumption of 
agents’ perfect rationality. In other terms, the two communities are working in two 
very different conceptual worlds. This situation helps to explain the reason for why 
financial economists perceive as “insightful” the works developed by econophysics 
considering that these works do not have a theoretical framework behind their 

                                            
11

 See Jovanovic and Schinckus (2016) for further details on the alternative issues which can be 
investigated in order to provide quantitative tests for the power laws. 
12

 This kind of difference echoes to the historical debates between the Newtonian physics and the 
Cartesian Physics: while the first “explained” everything in terms of gravitational force, the latter rather 
“explained” phenomena through a mechanical framework. See Gingras (2001) for further details 
about this debate. 
13

 The microscopic (individual) perspective is very important in economics and finance even for all 
issues related to macroeconomics. It is worth reminding that since Lucas’ critic (1976), it has been 
widespread accepted that macroeconomics must be based on microeconomic principles. 
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statistical sophistication. However, the previous sections of this article showed that 
the problem is not the lack of theoretical explanations but rather the misunderstood 
between the theoretical world within econophysicists and financial economists work.  
 
Actually, the lack of generative models constitutes a serious barrier between the two 
fields because the financial economists largely – we could even say almost 
exclusively – base their works on models with theoretical explanation. Simulations of 
real phenomena without theory are considered as very weak results for economists 
who already had methodological debates about the irrelevance of a strictly data-
driven approach in their field – one can mention the Koopmans-Vining debate at the 
end the 1940s (Mirowski, 1989a), or more recently, the Real Business Cycle (RBC) 
models approach (Eichenbaum, 1996; Hansen & Heckman, 1996; Hoover, 1995; 
Quah, 1995; Sims, 1996). The necessity for a theoretical explanation could lead to 
paradoxical situations: on one hand, it contributes to keep the efficient market theory 
despite its weak connection with the random character of stock price variations 
(Jovanovic, 2010); on the other hand, it contributes to justify the ARCH class of 
models despite it is a purely statistical approach providing no explanation of the 
empirical regularities” (Lux, 2006). In this context, ARCH models appear to be very 
similar to the way of modeling in econophysics implying that the reject of 
econophysics’ works is not plenty comprehensible from the econophysicists’ 
viewpoint. However, from a financial economics viewpoint two nuances exist –
although these nuances could seem very tenuous - Firstly, ARCH class of models 
uses statistical tests. Secondly, these models were used in finance in the 
perspective to test the efficient market theory while this theory is hardly testable 
(Jovanovic, 2010). Therefore, most of financial economists using ARCH class of 
models consider their models have theoretical foundations from a financial (and not 
from statistical only) point of view.  
 
In this perspective, a generative model shedding the light on the potential reasons 
for why power laws emerge in finance would represent a major step in the 
perspective of an integrated approach between financial economics and 
econophysics. Although models explaining the emerge of power laws in finance are 
not numerous (the vast majority of empirical works show the existence of a power 
law without explaining its origin), one can mention the works of Gabaix et al. (2006; 
2003) showing how institutional investor’s trades have an impact on the evolution of 
financial prices and volatility and generate a fat-tailed distribution of volumes and 
returns. The starting point of their model is the observation of the distribution related 
to the investors’ size, which would takes the form of a power law14. That fat-tailed 
distribution means that we can observe a big difference between large and small 
trading institutions implying an important heterogeneity of actors (in terms of size). 
From this diversity, it results a dispersal of the trading power in which only bigger 
institutions will have a real impact on the market. They demonstrated how an optimal 
trading behavior of large institutions (considering that these latter are the only ones 
that have an impact on the market prices) can generate a power law in the 
distribution of trading volume and financial returns. Gabaix et al. (2003, 2006) model 
constitutes a crucial step in very recent contributions concerning generative models 

                                            
14

 We can notice that in contrast Farmer et al. (2004) have shown that large price changes in 

response to large orders are very rare. See also Chiarella et al. (2009) for a more recent model 
showing that large price changes are likely to be generated by the presence of large gaps in the book 
of orders. 
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in order to explain the power law behaviors in financial data. We can also mention 
some works developed in the literature dealing with agent-based modelling which 
tried to identify an origin to the power-laws in finance: Lux and Marchiesi (2000), 
Alfarano et al. (2008) or Feng et al. (2012) proposed a specific calibration of micro-
interactions for models whose iterations can reproduce the observed power laws.  
We can wish this work paved the way for the development of potential explanative 
models for the emergence of power laws in financial data.  
 
6. Conclusion: What remains to be done… 
 
This article has studied the main reasons for why economists have difficulties to 
recognize the works developed by econophysicists. Beyond the clarification of the 
current situation between these two communities, this paper also pointed out many 
crucial progresses that took place in the recent years. Moreover, it leads to identify 
what remains to be done (from an economist point of view) for econophysicists to 
contribute significantly to financial economics and for a future collaboration between 
econophysics and financial economics. As we saw, three paths have still waiting to 
be investigated. 
 
A proposed agenda would be to develop 1) a common framework\vocabulary in 
order to better compare and integrate the two approaches; 2) statistical tests in order 
to identify and to test the power laws or, at least, to provide statistical tests to 
compare results from econophysics’ models with those given by financial models; 3) 
generative models in order to give a theoretical explanation for the emergence of 
power laws. 
 
The major objective of this paper was to clarify the reasons of the current dialogue of 
deaf between economists and econophysicists. This study led us to present the 
contextual elements, which contributed to the extension of physics outside of its 
borders. Afterwards, we presented the theoretical foundations supporting this 
extension in economics. This clarification allowed us to suggest a research agenda 
for a future fruitful collaboration between econophysicists and financial economists. 
Of course, this suggested agenda will certainly raise a number of 
questions\challenges but it creates many research opportunities by improving 
collaborations between financial economists and econophysicists. 
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